
HW2 Overview, C++ Intro

CSE 333
Section 4

Logistics
● Exercise 4

○ Due today (01/26) @11am
● Exercise 5

○ Due tomorrow (01/27) @11am
● Homework 2

○ Due next Thursday (02/02) @ 11:59pm
○ Indexing files to allow for searching
○ Bigger and longer than Homework 1!

Makefiles
target: src1 src2 … srcN

command/commands

Makefiles are used to manage
project recompilation. Project
structure / dependencies can
be represented as a DAG, which
a Makefile encodes to
recursively build the minimum
number of files for a target.

Makefiles

● In practice, these can often be written automatically or by following
common target patterns
○ In 333, we will ask you to submit Makefiles along with a few of your

exercises, but you can adapt existing rules from provided examples
○ It is more important that you understand the concepts behind them

and can read and understand target rules from a given Makefile

● Exercise 3 on your worksheet is provided for practice on your own
time; solutions will be released with the rest of the worksheet
solutions

Homework 2 Overview

Homework 2 Overview

● Build a search engine for a collection of files
○ User inputs a text query (one or more words)
○ The search engine outputs a ranked list of files (decreasing order)

within the collection that match the query

● Can watch the demo at the beginning of Lecture 8

Homework 2 Overview

● Build a search engine for a collection of files
○ User inputs a text query (one or more words)
○ The search engine outputs a ranked list of files (decreasing order)

within the collection that match the query

● More details:
○ Our collection of files will be the contents of a specified local directory

(including the contents of its subdirectories)
○ Naive matching: any file that contains all words in the query
○ Naive ranking: sum of the counts of all words in the query

■ Files in search results with equal ranking can be displayed in any order

Search Engine Implementation Overview

● Major components:
○ The directory crawler recursively finds the “regular” files in the

specified collection/corpus

Search Engine Implementation Overview

● Major components:
○ The directory crawler recursively finds the “regular” files in the

specified collection/corpus
○ As files are found, the file parser adds the words and their locations

into heap-allocated data structures
■ This uses the LinkedList and HashTable implementations from HW1

– need libhw1.a to be in the hw1/ directory

Search Engine Implementation Overview

● Major components:
○ The directory crawler recursively finds the “regular” files in the

specified collection/corpus
○ As files are found, the file parser adds the words and their locations

into heap-allocated data structures
■ This uses the LinkedList and HashTable implementations from HW1

– need libhw1.a to be in the hw1/ directory
○ The searchshell (i.e., search engine) reads in user queries and uses the

built up data structures to return the search results
■ Finish the infinite loop by using Ctrl-D

Part A: File Parsing

Read a file and generate a
HashTable of WordPositions

● The words are “normalized” –
lowercase and broken by
non-alphabetic characters

● HashTable key is the hashed
normalized word

● WordPositions has heap-allocated
copy of the word and a LinkedList of
its position(s) in the file.

My goodness! I love the course CSE333.\n
I'll recommend this course to my friends.\n

somefile.txt

ParseIntoWordPositionsTable(contents)

typedef struct {
 char *word; // in heap (owned)
 LinkedList *positions; // DocPositionOffset_t
} WordPositions;

Part B: Directory Crawling – DocTable

Recursively search directories and parse
files to build out a DocTable and
MemIndex for the collection of files

● DocTable maps document names to IDs
(in both directions) via HashTables

struct doctable_st {
 HashTable *id_to_name; // mapping doc id to doc name
 HashTable *name_to_id; // mapping docname to doc id
 DocID_t max_id; // max docID allocated so far
};
DocID_t DocTable_Add(DocTable *table, char *doc_name);

Part B: Directory Crawling – MemIndex

● MemIndex indexes individual
words to their locations in the
collection of files via a HashTable
of WordPostings.

HashTable

LinkedList

HashTableWordPostings

DocID_t

DocPositionOffset_t

typedef struct {
 char *word;
 HashTable *postings;
} WordPostings;

Letʼs examine the word “course”:
● The WordPostingsʼ HashTable

has single key, so only DocID/file 3
contains “course”

● The LinkedList shows it appears at
characters 25 and 62 in DocID 3

Part C: Searchshell

Parse user queries, use MemIndex to
generate search results, then output
to list with ranks

● Formatting should match example
output, other than ordering of ties

● Fairly open-ended – the exact
implementation is up to you!

typedef struct SearchResult {
 uint64_t docid; // matching document
 uint32_t rank; // rank quantifier
} SearchResult;

MemIndex_Search(MemIndex,

QueryArray, QueryLen);

Query: course friends my

LinkedList of SearchResult

Hints

● Read the .h files for documentation about functions!
● Understand the high level idea and data structures before getting

started
● Follow the suggested implementation steps given in the HW2 spec
● Debug on very small sets of short text files

○ You can create your own directory and files!

Pointers, References, & Const

Example

Consider the following code:
int x = 5;
int& x_ref = x;
int* x_ptr = &x;

5x, x_ref 5

0x7fff...x_ptr

When would it be a good idea to use to references instead of pointers?

Note syntactic similarity to pointer
declaration

Still the address-of operator!

Pointers vs. References

Pointers References

● Can move to different data via
reassignment/pointer arithmetic

● References the same data for its
entire lifetime - canʼt reassign

● Can be initialized to nullptr ● No sensible “default reference,”
must be an alias

● Useful for output parameters:
MyClass* output

● Useful for input parameters:
const MyClass& input

● void Func(int& arg) vs. void Func(int* arg)

● Use references when you donʼt want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● STYLE TIP: use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference canʼt be NULL/nullptr

Pointers, References, Parameters

Const
● Mark a variable with const to make a

compile time check that a variable is
never reassigned

● Does not change the underlying
write-permissions for this variable

int x = 42;

// Read only
const int* ro_x_ptr = &x;

// Can still modify x with
rw_x_ptr!
int* rw_x_ptr = &x;

// Only ever points to x
int* const x_ptr = &x;

420x7fff... 0x7fff...

xro_x_ptr rw_x_ptr

0x7fff...

x_ptr

Legend
Red = canʼt change box itʼs next to
Black = read and write

Exercise 1

Exercise 1

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff... x_ptrro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an int”

“Pointer to a const int”

ro_x_ref

Tip: Read the declaration “right-to-left”

Legend
Red = canʼt change box itʼs
next to
Black = read and write

Which lines result in a compiler error?
✔ OK ❌ ERROR

Bar(x_ref);
Bar(ro_x_ref);
Foo(x_ref);
ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Exercise 1
void Foo(const int& arg);
void Bar(int& arg);

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff...

x_ptr
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_x_ref

✔
❌ ro_x_ref is const
✔
✔
❌ ro_x_ref is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = canʼt change box itʼs next to
Black = “read and write”

Exercise 1

- When you donʼt want to deal with pointer semantics, use references
- When you donʼt want to copy stuff over (doesnʼt create a copy, especially for parameters

and/or return values), use references
- Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

When would you prefer void Func(int &arg); to void Func(int *arg);?
Expand on this distinction for other types besides int.

Objects and const Methods

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y);
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 double Distance(const Point& p) const;
 void SetLocation(const int& x, const int& y);

 private:
 int x_;
 int y_;
}; // class Point

#endif // POINT_H_

Cannot mutate the
object itʼs called on.

Trying to change x_ or
y_ inside will produce
a compiler error!

A const class object can only call
member functions that have been

declared as const

Exercise 2

Exercise 2

❌
✔

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

Which lines of the
snippets of code below
would cause compiler
errors?

✔ OK ❌ ERROR

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

✔
❌

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

What would you change about the
class declaration to make it better?

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

● make get_resp() const
● make the parameter to Compare() const

Homework 2

● Main Idea: Build a search engine for a file system
○ It can take in queries and output a list of files in a directory that has that query
○ The query will be ordered based on the number of times the query is in that file
○ Should handle multiple word queries (Note: all words in a query have to be in the file)

● What does this mean?
○ Part A: Parsing a file and reading all of its contents into heap allocated memory
○ Part B: Crawling a directory (reading all regular files recursively in a directory) and

building an index to query from
○ Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and
HashTable implementations from HW1!

Exercise 3a

✔
✔
✔
✔
❌

✔
✔
✔
❌
✔

int z = 5;
const int* x = &z;
int* y = &z;
x = y;
*x = *y;

int z = 5;
int* const w = &z;
const int* const v = &z;
*v = *w;
*w = *v;

Which lines of the snippets of code below
would cause compiler errors?

✔ OK ❌ ERROR

Exercise 3

1. Draw out Pointʼs DAG
○ The direction of the arrows is not important, but be consistent

https://courses.cs.washington.edu/courses/cse333/23wi/lectures/07/07-syscalls-make_23wi.pdf#
page=37

https://courses.cs.washington.edu/courses/cse333/23wi/lectures/07/07-syscalls-make_23wi.pdf#page=37
https://courses.cs.washington.edu/courses/cse333/23wi/lectures/07/07-syscalls-make_23wi.pdf#page=37

DAG

all

UsePoint UseThing Alone

UsePoint.o Point.o

UsePoint.cc Point.h Point.cc Thing.h UseThing.cc Alone.cc

CFLAGS = -Wall -g -std=c++17

all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o
g++ $(CFLAGS) -o UsePoint UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h
g++ $(CFLAGS) -c UsePoint.cc

Point.o: Point.cc Point.h
g++ $(CFLAGS) -c Point.cc

UseThing: UseThing.cc Thing.h
g++ $(CFLAGS) -o UseThing UseThing.cc

Alone: Alone.cc
g++ $(CFLAGS) -o Alone Alone.cc

clean:
rm UsePoint UseThing Alone *.o *~

Variable

Phony target
Note: all first

Makefile

Q&A :-)

